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1 Introduction

This report covers a factor analysis based on a dataset of songs to uncover underlying patterns
within musical attributes. The dataset, "songlist.xlsx", comprises a selection of a total of 3090
songs from 50 distinct artists characterized by nine numeric variables: danceability, energy, loud-
ness, acousticness, liveness, valence, tempo, popularity, and duration in seconds. Descriptive
statistics for these variables can be found in Table 3. Each variable represents a distinct aspect of
the music, providing a holistic perspective on the listening experience.

This analysis begins with the construction of an orthogonal factor model (OFM) utilizing three
factors, followed by the application of the VARIMAX rotation. This step is pivotal in maximizing
the interpretability of the factors, thereby enhancing our understanding of the data its structure.
The subsequent sections report the parameters of the OFM, delve into the meaning behind the
three factors, and interpret these in the context of practical application, aiming to find the con-
structs that these factors represent within the realm of music.

Further, the report delves into the communalities and specificities of the model, offering insights
into the shared variance among variables and the uniqueness belonging to each one. This analysis
is important to understand the extent to which individual song characteristics are explained by
the factors.

The visual aspect of the investigation is addressed by plotting the first two factors and coloring
each artist uniquely to show potential commonalities and disparities in the dataset. This shows
the similarities and differences among artists but also highlights specific outliers and their distinct
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musical signatures.

The objective of this report is not to just present statistical findings but to combine them into a
study that is interesting for both academics and people within the music industry.

2 a) Orthogonal Factor Model Estimation with VARIMAX Rotation

In this section, we construct an orthogonal factor model (OFM), defined as below, utilizing a
dataset comprised of various song attributes, each quantified by nine numerical metrics: dance-
ability, energy, loudness, acousticness, liveness, valence, tempo, popularity, and duration in sec-
onds.

Orthogonal Factor Model: X = µ + QF + U

With restrictions: E[F] = 0, E[U] = 0, Var[F] = Im, Var[U] = diag(ψ1, . . . , ψp), and E[FU′] = 0.

Where X represents the observed variables, µ is the mean vector of these variables, indicating
their average levels. The term QF involves Q, the matrix of factor loadings that links observed
variables to the underlying latent factors, and F, the factor scores that represent these latent fac-
tors. The model assumes these factors are unobserved but influence the observed data. Finally, U
denotes the unique factors or error terms, which capture the variance in observed variables not
explained by the latent factors. The model sets several conditions to maintain orthogonality and
independence: the expected values of F and U are zero, indicating they are centered around the
origin; the variance of F is an identity matrix Im, ensuring factors are uncorrelated and standard-
ized; the variance of U is a diagonal matrix, suggesting these unique factors are independent and
vary across variables; and there is no covariance between F and U, maintaining their orthogonal-
ity.

Our methodology starts with the standardization of these attributes to ensure a uniform scale, a
crucial step for the accuracy of the subsequent factor analysis. It is mathematically represented
as:

x =
(z − µ)

σ
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where z is the original value, µ is the mean, and σ is the standard deviation of the variable. This
standardization brings means and standard deviations close to 0 and 1, respectively, affirming
the dataset’s preparedness for further analysis (for proof, see Table 4 in the appendix).

The foundation of our factor model, a covariance matrix (Σ), detailed in Table 5, undergoes eigen-
value decomposition to unravel the dataset’s underlying structure.

Σ, is computed as:

Σ =
1

n − 1
XTX

where X is the matrix of standardized data, and n is the number of observations.

And the eigenvalues (λ) and eigenvectors (v) are computed as: Σv = λv. This decomposition
pinpoints three predominant factors, dictated by the eigenvalues: 2.703, 1.874, and 1.089, sug-
gesting significant dimensions within the musical attributes under examination. These factors
were selected based on the Kaiser criterion, which favors factors with eigenvalues exceeding one,
highlighting their importance in explaining variance more effectively than individual variables.

Subsequently, a VARIMAX rotation was applied to these selected factors to facilitate interpretabil-
ity. It is calculated as

(
r

∑
j=1

 1
p

p

∑
i=1

(
q4

ij −
1
p

p

∑
k=1

q2
kj

)2
 ,

where q is an element in the loading matrix, p is the number of variables, and r is the number of
selected factors.

This rotation technique, which aims to maximize the variance of squared loadings within each
factor, confirmed the orthogonality of the factors. The near-zero dot products between factor pairs
validated the successful orthogonalization post-rotation. It was calculated as ri · rj ≈ 0, for i ̸= j
where ri and rj are the rotated factor vectors.

In the next section, we will dive into the results of the rotation and their implications.
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3 b) Interpretation of Orthogonal Factor Model Parameters and Factor
Representations

The Orthogonal Factor Model (OFM) parameters, specifically the Factor Score Coefficient Matrix
(Q) and the Unique Variances (Ψ), serve pivotal roles in interpreting the underlying structure of
our dataset. The Q matrix translates the factor loadings and eigenvalues into coefficients that
express how each original variable is represented in the factor space, while Ψ accounts for the
variance unique to each variable, not captured by the model.

The Q matrix provides a refined perspective on the relationship between the original variables
and the factors. By multiplying the rotated factors with the square roots of their corresponding
eigenvalues, we obtain coefficients that signify the contribution of each variable to the factor
scores. This mathematical process transforms abstract factor loadings into tangible coefficients,
giving the computation of factor scores for each observation in the dataset. Factors range from -1
(negative) to 1 (positive association), with a value close to 0 indicating a weak association.

Table 1: The OFM parameters, the Factor Score Coefficient (Q) matrix, and the Unique variances
(Ψ).

Variable Factor1 Factor2 Factor3 Ψ

danceability 0.0552 -0.7903 0.1972 0.3338
energy -0.9243 0.0327 -0.1022 0.1344
loudness -0.8832 -0.1130 0.1321 0.1900
acousticness 0.8791 0.0014 0.0519 0.2249
liveness 0.0147 -0.0677 -0.7705 0.4019
valence -0.3037 -0.7788 -0.0191 0.3012
tempo -0.3604 0.1855 0.1278 0.8197
popularity 0.1708 -0.3191 0.5287 0.5898
duration_sec -0.2024 0.6986 0.3607 0.3412

To interpret the parameters and their implications to the model, we analyze Table 1. Starting with
the Factor Score Coefficients:

Factor 1 - "Calmness" or "Mellowness": Dominated by its strong negative association with ’en-
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ergy’ and ’loudness’ (-0.9243 and -0.8832), Factor 1 captures the essence of songs characterized by
their subdued intensity. This notion is backed up by the strong positive association with acoustic-
ness (0.8791) which also indicates peacefulness. This dimension reflects a calmness aspect, where
lower energy levels suggest a preference for genres that prioritize ambiance over intensity, such
as acoustic, ambient, or soft jazz. This factor’s prominence, indicated by the highest eigenvalue
(2.703), underscores its significant role in differentiating songs based on their energetic values,
showing listeners’ preferences for more easygoing songs.

Factor 2 - Upsetting "Non-Danceability" or "Rhythmic Complexity": Marked by negative loadings
on ’danceability’ and ’valence’ (-0.7903 and -0.7788), Factor 2 delves into the rhythmic attributes
of music that deter danceability. Songs that rank high on this factor will likely feature complex
rhythms or loud sounds, making them less attractive to dance on. This factor might encompass
genres like heavy metal, where the emphasis is on loud singing and guitar solos, or certain emo-
tional branches of jazz that have rhythmic complexity. The eigenvalue of 1.874 for this factor
indicates a substantial variance explained by these characteristics within the dataset.

Factor 3 - "Studio Production Quality": The strongest negative loading on ’liveness’ (-0.7705) char-
acterizes Factor 3, distinguishing between the live performance atmosphere and studio-produced
clarity. This dimension reflects a preference for polished production over the raw energy of live
recordings, aligning with genres that leverage studio technologies to enhance the listening ex-
perience. Pop, electronic, and highly produced rock music are probable genres, where studio
craftsmanship plays a big role in shaping the final sound. This makes sense because the factor
also has the strongest (positive) loading on popularity (0.5287), which those genres typically are.
The eigenvalue of 1.089 signifies the relevance of production quality as a distinguishing factor
within our music dataset.

The other OFM parameter, Unique variances, represents the proportion of variance for each vari-
able that remains unexplained by the factor model. Essentially, Ψ offers insight into the signatures
of each variable, showing which variable its variability is not accounted for by the extracted fac-
tors. Lower values of unique variances indicate that the factors successfully capture a substantial
portion of the variable’s variance, whereas higher values highlight the presence of specific as-
pects of the variable not well explained by the model. This makes sense because the second and
third variables are associated with the most influential Factor 1, and they have the lowest unique
variance. Conversely, the tempo (seventh) variable has no real influence on any of the factors and
has the highest unique variance, indicating it is badly explained by the OFM.
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The relationship between Q, and Ψ paints a comprehensive picture of the dataset’s dimensional
structure. The Q matrix helps to identify which variables significantly contribute to each factor
and quantifies this relationship. Meanwhile, Ψ assesses the model’s explanatory power, indicat-
ing the variance of each variable. This holistic view gives us a deeper understanding of how each
variable interacts within the factor model framework.

4 c) Communality and Specificity in the Factor Model: Implications
and Interpretations

In our orthogonal factor analysis with r = 3 factors, communality measures the variance of each
variable explained by the model, while specificity identifies the variance unique to the variable,
not captured by the factors.

For any given variable i, its communality (h2
i ) is determined by the sum of squared loadings of

that variable on all factors:

h2
i =

r

∑
j=1

(aij)
2

where aij denotes the element in the Q matrix of the ith variable on the jth factor, and r represents
the total number of factors.

Specificity (u2
i ) is computed as u2

i = diag(Ψ). One can also calculate them as u2
i = 1 − h2

i , assum-
ing that all variables are standardized, as discussed in section 2.

The results in Table 2 show that certain variables have high communalities, suggesting a big
portion of their variance is well-explained by the three extracted factors. This highlights a strong
association of these variables with the factors. Conversely, variables with high specificities reveal
segments of the dataset containing unique information not fully captured by the factors. This
could imply the existence of attributes inherent to these variables, needing the inclusion of more
factors for a comprehensive understanding of their variance.

These values together are very similar to the unique variances in the last section. Because the
second and third variables are associated with the most influential Factor 1, and they have the
lowest specificities also. This is of course because the specificities are equal to the diagonal of the
unique variances. Conversely, the tempo (seventh) variable has no real influence on any of the
factors and has the lowest communality, indicating it is badly explained by the OFM.
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Table 2: Communalities and Specificities for the variables of X.

Variable Communality Specificity
danceability 0.6665 0.3335
energy 0.8659 0.1341
loudness 0.8103 0.1897
acousticness 0.7755 0.2245
liveness 0.5984 0.4016
valence 0.6992 0.3008
tempo 0.1807 0.8193
popularity 0.4105 0.5895
duration_sec 0.6591 0.3409

5 d) Analysis of Artist Positioning Based on Energy and Danceability
Factors

In this section, we visualize artists on a spectrum of the first 2 factors found in the previous
sections. We discuss the visualization and discern patterns from the observations.

The mean scatterplot in Figure 1 of artists along the first two factors reveals distinctive positions
that artists occupy in relation to the musical attributes of energy and danceability. The individual
values of the artist can be found in Table 6. A scatterplot showing all the songs can be found in
Figure 2, it is ommitted here because showing more than 3000 datapoints is not very insightfull
when comparing 50 artists.

For Factor 1 (inverse of energy), artists like Billie Eilish, Olivia Rodrigo, and Lana Del Rey exhibit
lower energy, positioning themselves as outliers on the higher end of Factor 1, suggesting a ten-
dency towards more mellow, subdued music. On the other hand, artists such as Disturbed, Lamb
of God, and Trivium showcase higher energy levels, clustering on the lower end of this factor,
which aligns with the intensity often found in rock and metal genres.
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Figure 1: Mean Distribution of Artists on Orthogonal Factors Representing Energy and Dance-
ability. Each point represents the average position of an artist’s songs in the space defined by the
first two factors—Factor 1 (mean energy level) and Factor 2 (mean danceability)—derived from
OFM. The plot illustrates the relative positioning of artists within these two dimensions, provid-
ing insights into the underlying structure of musical attributes in the dataset.

Factor 2 (inverse of danceability) delineates the degree to which the music is suitable for dancing.
Artists like Alter Bridge and Within Temptation are placed higher on this factor, indicating a
less danceable quality to heavy metal songs. Conversely, artists such as Bruno Mars, Dua Lipa,
and Charlie Puth score lower, suggesting their pop songs feature more rhythmic and danceable
elements.

Some patterns found during this analysis in the music streaming industry, by Figure 1:

1. The central (biggest) cluster, where artists like Ed Sheeran, Justin Bieber, and Harry Styles
are found, may indicate a balance between energy and danceability, a characteristic of pop
music that straddles these attributes. It is not for nothing that the pop genre is short for
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popular music, as it maximizes appeal, as evidenced by the biggest cluster in this study.

2. Artists who exhibit both lower energy and lower danceability (high on both factors), like
Lorde, might represent genres with more lyrical emphasis, such as indie or alternative
styles.

3. Notably, the lower-left quadrant, which would represent high energy and danceability, is
sparsely populated (this is especially notable when looking at all songs in Figure 2), sug-
gesting that songs generally do not exhibit both high calmness and high danceability—a
reasonable expectation given the negative loading of both factors. This goes together with
the first pattern that we addressed.

4. Low-energy songs that do not make you want to dance are the least popular, as the upper-
right quadrant is almost empty.

This analysis provides an insightful representation of where artists stand in the energy-danceability
spectrum. Music industry stakeholders could utilize this information for artist branding, genre
classification, and tailoring music recommendations to listener preferences.

6 Conclusion

In this project, we dived into a dataset of songs to understand the patterns that define musical
preferences. Starting with the construction of a factor model using three distinct factors, the goal
was to simplify the complex interactions among various musical features into something more
straightforward.

The factor analysis process revealed three main themes: 1. Calmness: This theme emerged from
songs with lower energy and loudness levels, indicating a preference for genres that are more
subdued. 2. Non-Danceability: This factor identified songs that aren’t typical dance tracks, pos-
sibly due to their intense sounds or dynamic flow. 3. Studio Production Quality: This theme
focuses on the production aspect, distinguishing studio-produced tracks from live recordings.

The report also shed light on how well the model captured the essence of the music. While certain
attributes like danceability and energy were well-explained, there were unique aspects of some
songs that the model didn’t fully capture, like tempo. This insight is crucial, as it suggests that
while the model provides a solid foundation, there’s room to include more factors or refine the
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approach to better understand the full spectrum of musical attributes.

These findings are more than just academic; they have real-world applications, particularly in
developing music recommendation systems and understanding artist positioning in the music
industry. By mapping artists and songs along these dimensions, we can get a clearer picture of
their unique sounds. This information is invaluable for marketing, discovering new trends, and
predicting the next big hit.

In summary, this project was an exploration of the music industry through a data science lens.
The ability to quantify and analyze these factors opens up new possibilities, showing that even
something as subjective as music can be understood in a structured way.

7 Appendix

7.1 Introduction

Table 3: Descriptive statistics for the variables in the songlist.xlsx file.

danceability energy loudness acousticness liveness valence tempo popularity duration_sec

count 3090 3090 3090 3090 3090 3090 3090 3090 3090
mean 49.759 75.128 -5.932 14.191 20.960 39.758 123.905 50.224 241.805
std 14.785 22.107 2.743 24.681 16.904 20.938 30.577 16.553 66.185
min 7.320 0.826 -26.383 0.000 1.930 2.720 60.269 0.000 16.000
25% 39.600 60.925 -7.061 0.033 9.910 23.500 99.999 38.000 203.013
50% 49.900 81.500 -5.297 1.340 14.100 37.250 121.001 49.000 231.267
75% 59.100 94.500 -4.116 15.100 28.875 53.275 143.867 62.000 269.543
max 96.800 99.800 -1.347 99.400 99.600 96.900 235.998 96.000 939.139
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Table 4: The means and standard deviations after standardisation for the variables in the
songlist.xlsx file. They should be close to 0 and 1, respectively.

Variable Mean Standard Deviation

danceability -3.491633e-16 1.000162
energy 2.580460e-16 1.000162
loudness -6.654152e-17 1.000162
acousticness -2.076728e-16 1.000162
liveness -2.461533e-16 1.000162
valence 4.720424e-16 1.000162
tempo -4.504847e-16 1.000162
popularity 6.500374e-16 1.000162
duration_sec 3.365521e-16 1.000162

Table 5: Covariance matrix for the variables in the standardized songlist.xlsx file.

danceability energy loudness acousticness liveness valence tempo popularity duration_sec

danceability 1.000 -0.194 0.017 0.091 -0.188 0.463 -0.200 0.398 -0.285
energy -0.194 1.000 0.727 -0.774 0.158 0.157 0.227 -0.290 0.149
loudness 0.017 0.727 1.000 -0.613 -0.014 0.201 0.167 -0.062 0.078
acousticness 0.091 -0.774 -0.613 1.000 -0.111 -0.141 -0.191 0.232 -0.146
liveness -0.188 0.158 -0.014 -0.111 1.000 -0.047 0.003 -0.212 -0.003
valence 0.463 0.157 0.201 -0.141 -0.047 1.000 0.050 0.149 -0.232
tempo -0.200 0.227 0.167 -0.191 0.003 0.050 1.000 -0.045 0.025
popularity 0.398 -0.290 -0.062 0.232 -0.212 0.149 -0.045 1.000 -0.092
duration_sec -0.285 0.149 0.078 -0.146 -0.003 -0.232 0.025 -0.092 1.000
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7.2 a)

7.3 d)

Figure 2: Distribution of Artists on Orthogonal Factors Representing Energy and Danceability.
Each point represents the position of an artist’s song in the space defined by the first two fac-
tors—Factor 1 ( energy level) and Factor 2 (danceability)—derived from an orthogonal factor
analysis. The plot illustrates the relative positioning of artists within these two dimensions, pro-
viding insights into the underlying structure of musical attributes in the dataset.
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Table 6: Observations from figure 1.

artist Factor1 Factor2

AC/DC -0.623812 -0.162670
Aerosmith -0.306823 0.532423
All That Remains -0.957305 0.470631
Alter Bridge -1.062780 1.518019
Ariana Grande 0.886371 -1.122492
Avenged Sevenfold -0.739375 1.072003
Beyonce 1.172632 -0.293560
Billie Eilish 4.119681 -0.753919
Bon Jovi -0.303400 0.536330
Bruno Mars 0.536336 -1.674376
Bullet For My Valentine -1.054447 0.823257
Charlie Puth 1.222056 -1.567111
Def Leppard -0.165611 0.207751
Demi Lovato 0.137702 -0.616893
Disturbed -1.132185 -0.134029
Dua Lipa 0.105628 -1.575599
Ed Sheeran 1.703751 -1.390816
Europe 0.342814 0.159513
Fifth Harmony 0.186463 -0.919677
Five Finger Death Punch -1.046954 0.060253
Ghost 0.243965 0.620807
Guns ’N Roses -0.029239 0.787616
Halsey 0.757257 -0.711889
Harry Styles 1.059748 -0.632899
Jonas Brothers -0.401152 -0.828615
Justin Bieber 0.924184 -1.134395
Katy Perry -0.028377 -1.002966
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Table 7: Table 6 continued.

artist Factor1 Factor2

Killswitch Engage -1.002886 0.527546
Lady Gaga 0.061753 -1.031749
Lamb of God -1.192713 1.152867
Lana del Rey 2.614655 0.844708
Lorde 2.427345 -0.353600
Miley Cyrus -0.094278 -0.566446
Nick Jonas 0.295458 -1.090745
Olivia Rodrigo 2.631333 -0.617711
One Direction -0.320969 -1.283495
Poison -0.823196 -0.110925
Post Malone 0.801256 -0.648195
Rihanna 0.512196 -0.640556
Sabaton -0.327446 0.342522
Sam Smith 2.389272 -0.550723
Selena Gomez 0.102295 -1.285196
Shawn Mendes 1.255945 -1.071771
Sia 0.252248 -0.059600
The_Weeknd 0.823182 -0.575684
Trivium -0.926381 0.916823
Van Halen 0.334107 0.269830
Whitesnake 0.071594 0.740650
Within Temptation 0.032387 1.366553
Zara Larsson 1.239788 -0.351051
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